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Abstract. Berry’s formulation of the topological phase for periodic Hamiltonians is exten- 
ded to the case of non-adiabatic evolution by proper choice of initial states. This restores 
a full parallel with the non-adiabatic formalism of Aharonov and Anandan for periodic 
orbits in projective Hilbert space. The Berry phase for the novel example of a single 
electron in a rigidly rotating octahedral environment is calculated using both this formalism 
and that used previously by Aharonov and Anandan and by Page. 

1. introduction 

Since the discovery by Berry of the topological phase that bears his name, two 
approaches have commonly been used in its investigation. In the first (Berry 1984, 
Cheng and Fung 1989), an instantaneous eigenstate of H ( 0 )  is adiabatically evolved 
from t = 0 to t = 6 where the Hamiltonian is cyclic, i.e. H (  ?) = H ( 0 ) .  In the second 
(Aharonov and Anandan 1987, Page 1987), one considers a closed path in projective 
Hilbert space, rather than in parameter space, and without reference to the Hamiltonian 
that generates it or to any choice of initial state. At first sight these approaches seem 
very different, the most significant difference being the use of the adiabatic approxima- 
tion in the first, Aharonov and Anandan (1987) presenting the second method as the 
method of choice for going beyond the adiabatic approximation. 

This apparent contrast may be considered as an artefact of the choice of initial 
state in the adiabatic approach. It is the choice of the initial state as an instantaneous 
eigenstate of H ( 0 )  which forces Berry to use adiabatic evolution so as to guarantee a 
closed path in projective Hilbert space. We relax this restriction by choosing the initial 
state in such a way that, although not an eigenstate at t = 0, it returns to itself (to 
within a phase) at time 6 thereby ensuring a cyclic path in projective Hilbert space. 
Cheng and Fung (1989) also profess to link the two formulations, but insofar as these 
authors commit themselves to an initial state that is an eigenstate of H(O), the cyclic 
behaviour which they discuss can arise only in the adiabatic case. We show later how 
a generalisation of their formulation corresponds to the present development. 

Using our cyclic choice of initial state, we derive an explicit formula for the Berry 
phase in the case of evolution by a cyclic Hamiltonian, and discuss the region of the 
adiabatic limit. 

2. Development 

Consider a quantum mechanical system with &dimensional Hilbert space 2 an< 
Hamiltonian fi. By specifying some basis 223 = {In)l n = l ( l ) d } ,  we may represent H 
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by a d x d matrix H, and a quantum state 14) by a column vector 4. An initial state 
4(0) then evolves according to the matrix equation 

_-  "- --iH4/ h. 
dt  

In the case that H is ?-periodic, i.e. H ( t +  ?) = H ( t )  for some ?, and using Floquet's 
theorem, any fundamental matrix of the linear system of ordinary differential equations 
(1) has the form 

~ ( t )  = Z(r )  e iMr  (2) 
where Z and M are d x d matrices, M being constant and Z being ?-periodic. (The 
factor i in the exponent is conventional at this point.) As the above notation suggests, 
we now consider exclusively the particular fundamental matrix U (  t )  satisfying U ( 0 )  = I. 
As the time development of any initial state is then given by 4(  t )  = U (  t)d(O), we see 
that U ( t )  is simply the matrix representation of the time evolution operator c(t) in 
the basis W, U is unitary and H and U are related by 

d U  
dt  

ih-= HU. (3)  

Since U ( ? )  is unitary and is equal to exp(iM?), M is Hermitian; since in addition 
U (  t )  is unitary for all t, Z(  t )  is unitary. U (  ?) has d linearly independent eigenvectors 
c # J ~ ( O )  with eigenvalues exp(ixm); xm is real since M is hermitian. If we choose one 
of the &(O) as our initial state and write d , ( t )  for the evolved form U(t)4 , (0) ,  we 
get 

4 m ( i )  = u ( r ) + m ( O )  =exP(ixm)4m(O). (4) 
Thus the initial states &(O) each return to themselves after time ? (in the evolution 
associated with H(t)) up to a phase xm. The existence of a basis of %j in which each 
basis state returns to itself up to a phase after a fixed time t '  is general, depending 
only on the unitarity of U (  t ' )  and is not dependent on the finite dimensionality of 5't 
nor the cyclicity of Ht. 

To calculate the Berry phase angle -ym associated with the evolution of the initial 
state &(O) we must calculate the dynamical phase 6, given by 

Now equations (2) and (3)  give 

d U  
UtHU =ihUt -  

d t  

(7) = e- 'M'(ihZ+i - h M )  eiM'* 

Since &,(O) is an eigenstate of exp(iM?) with eigenvalue exp(ixm), it is also an 
eigenstate of M with eigenvalue xm/?. Equations ( 5 )  and (7) give 

( 4 m ( t ) I H I d m ( t ) )  =(4m(O)I(ifiZ'Z- h X m /  f ) I 4m(O) )  (8) 

t In a finite basis of dimension d it is obvious that there are d cyclic states, since a d x d unitary matrix 
has d eigenvectors. 
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Hence Berry's phase is given by 
i 

ym=xm-6m=ilo (m( t ) lk ( t ) )d t  (10) 

where I m ( t ) ) =  ZI&(O)). 
This is of similar form to equation (2.21) of Cheng and Fung (1989), and similarities 

can be traced in Berry (1984). Cheng and Fung take the eigenstate In(0)) of H ( 0 )  as 
the initial state, and decompose U as UR, R being chosen to be diagonal in the basis 
In(0)) so as to facilitate the calculation of U ;  In(0)) evolves into In( t ) )  under U. They 
distinguish between the (invariant) topological phase angle yT and the (partially 
conventional, as also discussed by Giavarini et al 1989) Berry phase angle ye in their 
problem: YT = YB + a. 

To extend their formulation to include the evolution of cyclic initial states, we need 
only to choose R to be diagonal in the new basis \{+,,(O)}); the relationships between 
the phases of the evolved states are I4,, ( I ) )  = exp( i[ yD + yB])l n ( I ) ) ,  I n ( I ) )  = e'" 1 n (0)), 
where the dynamical phase angle is y o .  If now the breakdown between U and R is 
constrained as in equation (2) ( U  + Z,  R + e iMf) ,  then a = 0, and the Berry phase is 
the topological phase. 

Differentiating equation (2) with respect to time, using equation (3), and substituting 
t = 0, we find 

M = -H(O)/h+iZ(O) (11) 

which gives a simple method of calculating M as well as the possibility of a perturbative 
approach to its calculation for the case of almost adiabatic evolution (Berry 1987). 

3. Examples 

3.1. Time-independent case 

When H is time independent, U = exp( -iHt/ h )  and we may take M = - H /  h, Z = I.  
The initial states are eigenstates of H and the Berry phase vanishes. 

3.2. Adiabatic evolution 

In the original example of Berry (1984), H = H ( R ( t ) ) ,  where R ( t )  is a closed path C 
in some parameter space: R( t )  = R ( 0 ) .  By the adiabatic theorem, &,( t )  is an instan- 
taneous eigenstate of H( t )  with eigenvalue E,( t ) :  

(12) 
Now &,( t )=ZeiM'&,(0) ,  and +,(O) is an eigenstate of eiM' with eigenvalue 
exp(iX,t/ I ) ,  so that 

(13) 
Since Zl&(O)) = Im( t ) ) ,  l m ( t ) )  is an instantaneous eigenfunction of H with eigenvalue 
E , ( t ) .  Now I m ( i ) )  = Z(l ) l+ , (O))  = I4,(0)) = Im(O)), so that Im( t ) )  is single valued 
and may be written ( m ( R ( t ) ) ) .  Thus dlm(t))/dt  = V , l m ( R ) )  dR/dt, and changing 
variable from t to R, we obtain Berry's result: 

H 4 m  ( t )  = E m ( ? ) + ,  ( t ) .  

H z + m ( O )  = E m  (t)z4m (0 ) .  

( m ( R ) I V , m ( R ) )  dR. (14) 
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3.3. Rigid rotation in a two-dimensional system 

We consider a Jahn-Teller active system, with two or more quasimolecular electronic 
states which are degenerate when the molecule has its full symmetry, and which are 
coupled to a normal mode of the complex whose distortions break the degeneracy. 

Mead ( 1980,1983) has discussed the non-trivial 'molecular Aharonov-Bohm' phase 
change arising in the Born-Oppenheimer electronic wavefunctions of such a system 
under a cyclic excursion in the normal mode; Berry (1984) has already indicated the 
relevance of this work to the Berry phase. For applications of the concept of Berry 
phase per se in such systems, see O'Brien (1989) and Ham (1987). 

We now consider a new way of generating a cyclic wavefunction and an allied 
topological phase, not as the result of a cyclic evolution of a normal coordinate, but 
as the result of a symmetry operation of the molecular point group G. For definiteness, 
we consider an octahedral molecule, and as symmetry operation 0 we take a 
rotation about one of the fourfold axes, say z. 

The degenerate members of any electronic level transform as partners under some 
irrep (unitary irreducible representation) of G, and will in general be mixed under a 
symmetry operation 0. Because of the irreducible nature of the representation, it is 
only in an appropriate choice of basis, itself dependent on the choice of symmetry 
operation, that this mixture will become a diagonal matrix. The formulation of 
Aharonov and Anandan (1987) is adaptable to this problem, since there is cyclic 
evolution in projective Hilbert space. The analogous formulation of Berry requires 
the definition of a closed path in a parameter space, which must therefore be chosen 
not as the space Ju of all orientations of the octahedron, but the factor space JU/G 
of all physically distinguishable orientations. 

There are several methods for calculating the analogue to the Berry phase. 

Method 1 .  Brute force. Let the required change in orientation be generated by rotation 
at constant angular velocity w for a time i= 57/2w. The Hamiltonian H is given by 
H ( t )  = T f  R ( w t )  V, where T and V are the kinetic and potential energy operators for 
the original system and where R ( 0 )  rotates coordinates by the time-dependent angle 
0 about the z axis. (For the relationship between rotations and the conventionality 
of the Berry phase, see Giavarini et a1 (1989) and references therein.) We consider 
the evolution of one initial state of the form 

(15) 
where + , ( t )  = R(wt)+ , (O)  and are instantaneous eigenstates of H (  t )  with (time- 
independent) eigenvalues E,. In the S 0 3 - S 0 2  basis $,(O) are given by $*(O)= 
r(12 2)*/2 -2))/J2. We note that as R(wt)llm)=e""'lIm), 

+(O) = 4+(0) + P + - ( O )  

$*( t )  = cos 2wt$,(O) - i sin 2wti,bT(0). 
By direct substitution we may verify with some labour that the initial state (equation 
15) evolves into 
+ ( t )  = exp(-iEt/2h)[{a cos e t+ i [ -A~~/(2 t ie )+2wp/e]  sin et}++( t )  

where A =  E+ - E-, E = E++ E - ,  and 8 = [A2/(4h2)+4w2]1'2. It is easily seen that 
cyclic evolution is obtained for the choice 

+ { p  COS e t + i [ A p / ( 2 h e ) + 2 w ~ ~ / e ]  sin e t }$ - ( t ) ]  (16) 

-- P e A  -F-+- 
CY 2w 4hw 
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up to  the overall phase e“, where 

,y = ~ ( 1 7  8/2w - E/4hw) (18) 

( I / ( t )  =exp(+iOt) e x p ( - i E t / 2 h ) [ a ( I / + ( t ) + P ( I / - ( t ) ] .  (19) 

for this choice the solution of equation (16) becomes 

Using the relationships a’= f* A/4h8 and aP = + w /  8 (where a is assumed real), we 
may readily calculate the dynamical phase 

6 = - ( ( I / ( t ) lH( t ) l ( I / ( t ) )  d t / h  = - E . r r / ( 4 h w ) F A ’ n / ( 8 h 2 8 0 )  loi 
and obtain the Berry phase 

y = . r r ~ 2 . r r w / e .  (20) 

Method 2. Geometrical. Using the projective Hilbert space method in the terminology 
of Page (1987), we work in the two-dimensional Hilbert space spanned by the set 
{++(O), + - ( O ) }  and with the general member Z+$+(O) + Z-(I/-(O), with the corresponding 
one-dimensional projective Hilbert space parametrised by the coordinate A = Z+/Z-. 
In terms of this coordinatisation, the Berry phase is given by y =$ A where 

i IdA-A d i  

and the integral is round the closed path C followed by the system in projective Hilbert 
space. In our case, and on C, we have 

a cos 2wt - ip sin 2wt 2 0 ( a 2 - P 2 ) a P  ~ 0 ~ 4 w t  d t  
A =  A( t )  = - P cos 2wt - ia sin 2wt p’ cos’ ut + a 2  sin’ wt 

and hence y = jb A( t )  d t  = .rr( 1 +2ap) ,  in agreement with equation (20). 

Method 3. Cyclic. As an application of the formalism of section 2, we may use the 
full solution +( t )  in the ( I / * (O)  basis to write (I/( t )  = U (  t)(p”), where 

C C ’ + ~ W S S ~ / @  -iAcs‘/(2h8) -isc’+2wicst/8+Ass’/(2h8) 
-isct+2wi/8 -Ass’/(2h8) cc’+2wss’/8+iAcs‘/(2he) 

U ( t )  = exp(-iEt/2A) ) 
(21) 

( 
where c = cos 2wt, s = sin 2wt, c’= cos 8t and s t =  sin Of. We now decompose this in 
the form of equation (2), with 2 containing the periodic time dependence and M 
being independent of t. Inspection suggests the ?-periodic form 

2 = exp( -2iwt) ( -ys -is) 
and this in turn gives the (as desired) time-independent expression 

20 - ( E  + A)/2h 2w 
2w - ( E  - A)/2h 

M = (  
2w 

either by using equation (11) with the form 
E + A  cos 4wt 

-iA sin 4wt 
+iA sin 4wt 

E - A  cos 4wt 
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or by transforming Z’U to a basis in which it is diagonal, taking logarithms of the 
eigenvalues, and transforming back again. In the first method the original guess for 
2 is verified by constructing U from equation (2); in the second method, the diagonal 
form of M is Md = SMS’ = diag(2w - E / 2 h  + 8, 2w - E / 2 h  - e), where S = (-:; “,), 
7, = (f * A/4hB)”*. These results imply agreement with our earlier calculation both 
in the overall phase shift of x (equation (18)) and in the ratio p / a  of eigenvector 
components in 4(0) of equation (17). Z’Z is then readily seen to be -2iw(t i ) ,  so 
that (4(0)lZtZl4(O)) = -2iw(l+2w/8)  and hence the Berry phase (from equation 
(10)) again in agreement with equation (20). 

4. Discussion 

The method is general, and certainly not restricted to the above application. We have 
an unambiguous prescription for the kind of decomposition of U envisaged by Cheng 
and Fung (1989), provided one uses cyclic states rather than eigenstates, which lends 
itself to direct calculational methods. It is necessary to determine the nature of the 
cyclic states, and the above method might be improved if a direct method for calculating 
Z (  t )  were developed. A knowledge of Z would also (from equation (12)) help in a 
discussion of amost adiabatic evolution (Berry 1987). 
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Note added in proof: The method described above can be combined with a similar decomposition of another 
fundamental matrix (Shirley 1965) to give a much simplified calculation of Z and so of the Berry phases. 
We report this elsewhere. 
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